Source code for pandas_ta.trend.decay
# -*- coding: utf-8 -*-
from numpy import exp as npExp
from pandas import DataFrame
from pandas_ta.utils import get_offset, verify_series
[docs]def decay(close, kind=None, length=None, mode=None, offset=None, **kwargs):
"""Indicator: Decay"""
# Validate Arguments
length = int(length) if length and length > 0 else 5
mode = mode.lower() if isinstance(mode, str) else "linear"
close = verify_series(close, length)
offset = get_offset(offset)
if close is None: return
# Calculate Result
_mode = "L"
if mode == "exp" or kind == "exponential":
_mode = "EXP"
diff = close.shift(1) - npExp(-length)
else: # "linear"
diff = close.shift(1) - (1 / length)
diff[0] = close[0]
tdf = DataFrame({"close": close, "diff": diff, "0": 0})
ld = tdf.max(axis=1)
# Offset
if offset != 0:
ld = ld.shift(offset)
# Handle fills
if "fillna" in kwargs:
ld.fillna(kwargs["fillna"], inplace=True)
if "fill_method" in kwargs:
ld.fillna(method=kwargs["fill_method"], inplace=True)
# Name and Categorize it
ld.name = f"{_mode}DECAY_{length}"
ld.category = "trend"
return ld
decay.__doc__ = \
"""Decay
Creates a decay moving forward from prior signals like crosses. The default is
"linear". Exponential is optional as "exponential" or "exp".
Sources:
https://tulipindicators.org/decay
Calculation:
Default Inputs:
length=5, mode=None
if mode == "exponential" or mode == "exp":
max(close, close[-1] - exp(-length), 0)
else:
max(close, close[-1] - (1 / length), 0)
Args:
close (pd.Series): Series of 'close's
length (int): It's period. Default: 1
mode (str): If 'exp' then "exponential" decay. Default: 'linear'
offset (int): How many periods to offset the result. Default: 0
Kwargs:
fillna (value, optional): pd.DataFrame.fillna(value)
fill_method (value, optional): Type of fill method
Returns:
pd.Series: New feature generated.
"""