filter_by_token_sniffer_score#
API documentation for tradingstrategy.utils.token_filter.filter_by_token_sniffer_score Python function.
- filter_by_token_sniffer_score(pairs_df, risk_score, drop_tokens_with_missing_data=True, known_good_tokens={'AAVE', 'DAI', 'FLOKI', 'MKR', 'NEXO', 'PEPE', 'SNX', 'SYN', 'USDC', 'USDS', 'USDT', 'WARB', 'WAVAX', 'WBNB', 'WBTC', 'WETH', 'WMATIC', 'cbBTC'}, max_buy_tax=0.03, max_sell_tax=0.03, printer=<function <lambda>>, taxless_exchanges={'uniswap-v3'})[source]#
Filter out tokens by their TokenSniffer risk score.
Example:
# Load metadata pairs_df = load_token_metadata(pairs_df, client) # Scam filter using TokenSniffer pairs_df = filter_by_token_sniffer_score(pairs_df, 25)
- Parameters:
known_good_tokens –
These are set of tokens we know are good, but TokenSniffer gives them bad score.
E.g. some Coinbase tokens on Base.
max_buy_tax –
Drop tokens with too high buy tax.
Currently missing tax entries are passed through filter.
max_sell_tax –
Drop tokens with too high sell tax
Currently missing tax entries are passed through filter.
printer – Diagnostics output callback, logger.info() or print.
taxless_exchanges – Exchange ids that cannot carry taxed tokens.
pairs_df (DataFrame) –
risk_score (int) –
- Returns:
Pairs DataFrame with too risky pairs removed
- Return type:
DataFrame