examine_anomalies#
API documentation for tradingstrategy.utils.wrangle.examine_anomalies Python function.
- examine_anomalies(pair_universe, price_df, printer=<function <lambda>>, max_print=2, pair_id_column='pair_id', open_close_max_diff=5.0, open_close_min_diff=-0.99, between_high_diff=5.0, between_low_diff=-0.99)[source]#
Check the price dataframe for data issues.
Print out to consoles bad rows in the OHLCV candle price data
Perform
Open/close diff check
In between timeframes diff check
TODO: This is a work in progress helper.
See also:
- Parameters:
price_df (DataFrame) –
OHLCV data for multiple trading pairs.
Can be grouped by pair_id_column.
pair_id_column (str | None) – Fix column identifies the pair name in the data.
max_print – How many entries print per each anomaly check
open_close_max_diff – Abnormal price increase X
open_close_min_diff – Abnormal price decrease X
pair_universe (tradingstrategy.pair.PandasPairUniverse | None) –
between_high_diff (float | None) –
between_low_diff (float | None) –