filter_pairs_default#
API documentation for tradingstrategy.utils.token_filter.filter_pairs_default Python function.
- filter_pairs_default(pairs_df, verbose_print=<function <lambda>>, max_trading_pair_fee_bps=100, blacklisted_token_symbols=None, good_quote_tokes=('USDC', 'USDT', 'WETH', 'WMATIC', 'WAVAX', 'WBNB', 'WARB'), exchanges=None, exchange_ids=None, pair_ids_in_candles=None, chain_id=None)[source]#
Filter out pairs that are not interested for trading.
Does not perform liquidity filtering you need to perform separately
This includes
Non-volatile pairs (stETH/ETH) -
filter_for_stablecoins()
Derivate pairs (stETH/ETH) -
filter_for_derivatives()
Rebasing tokens (OHM, Klima)
- Parameters:
max_trading_pair_fee_bps (int | None) – Limit to pairs with less pool fee than this
verbose_print – Output function to print out information about narroving the dataset
good_quote_tokes (Collection[str]) – Only allow trading pairs that trade against these tokens.
blacklisted_token_symbols (Optional[Collection[str]]) – Avoid these base tokens for some reason or another
exchanges (Optional[Collection[Exchange]]) –
Limit trading pairs to these dexes.
Use Exchange objects.
exchange_ids (Optional[Collection[int]]) –
Limit trading pairs to these dexes.
Use Exchange primary keys.
pair_ids_in_candles (Optional[Union[Collection[int], Series]]) –
Filter based on loaded candle data.
Remove trading pairs that do not appear in the candle data.
chain_ids – Take trading pairs only on these chains
pairs_df (DataFrame) –
chain_id (tradingstrategy.chain.ChainId | None) –
- Returns:
DataFrame for trading pairs
- Return type:
DataFrame