visualise_grid_rolling_metric_heatmap#
API documentation for tradeexecutor.visual.grid_search_advanced.visualise_grid_rolling_metric_heatmap Python function.
- visualise_grid_rolling_metric_heatmap(df, width=1200, height_per_row=500, extra_height_margin=100, charts_per_row=3, range_start=None, range_end=None, discrete_parameters=True, scale=(- 2, 2), colorscale='RdYlGn')[source]#
Create an “animation” for two grid search parameters how results evolve over time as a heatmap.
TODO: Visual Studio Code ignores any given height.
- Parameters:
df (DataFrame) – Created by
calculate_rolling_metrics()
charts_per_row – How many mini charts display per Plotly row
range_start –
Visualise slice of full backtest period.
Inclusive.
range_end –
Visualise slice of full backtest period.
Inclusive.
discrete_parameters – Measured parameters are category like, not linear.
scale – Heatmap scale.
- Returns:
List of figure s, one for each index timestamp.
- Return type:
Figure