Source code for pandas_ta.overlap.rma
# -*- coding: utf-8 -*-
from pandas_ta.utils import get_offset, verify_series
[docs]def rma(close, length=None, offset=None, **kwargs):
"""Indicator: wildeR's Moving Average (RMA)"""
# Validate Arguments
length = int(length) if length and length > 0 else 10
alpha = (1.0 / length) if length > 0 else 0.5
close = verify_series(close, length)
offset = get_offset(offset)
if close is None: return
# Calculate Result
rma = close.ewm(alpha=alpha, min_periods=length).mean()
# Offset
if offset != 0:
rma = rma.shift(offset)
# Handle fills
if "fillna" in kwargs:
rma.fillna(kwargs["fillna"], inplace=True)
if "fill_method" in kwargs:
rma.fillna(method=kwargs["fill_method"], inplace=True)
# Name & Category
rma.name = f"RMA_{length}"
rma.category = "overlap"
return rma
rma.__doc__ = \
"""wildeR's Moving Average (RMA)
The WildeR's Moving Average is simply an Exponential Moving Average (EMA) with
a modified alpha = 1 / length.
Sources:
https://tlc.thinkorswim.com/center/reference/Tech-Indicators/studies-library/V-Z/WildersSmoothing
https://www.incrediblecharts.com/indicators/wilder_moving_average.php
Calculation:
Default Inputs:
length=10
EMA = Exponential Moving Average
alpha = 1 / length
RMA = EMA(close, alpha=alpha)
Args:
close (pd.Series): Series of 'close's
length (int): It's period. Default: 10
offset (int): How many periods to offset the result. Default: 0
Kwargs:
fillna (value, optional): pd.DataFrame.fillna(value)
fill_method (value, optional): Type of fill method
Returns:
pd.Series: New feature generated.
"""