Source code for pandas_ta.overlap.rma

# -*- coding: utf-8 -*-
from pandas_ta.utils import get_offset, verify_series


[docs]def rma(close, length=None, offset=None, **kwargs): """Indicator: wildeR's Moving Average (RMA)""" # Validate Arguments length = int(length) if length and length > 0 else 10 alpha = (1.0 / length) if length > 0 else 0.5 close = verify_series(close, length) offset = get_offset(offset) if close is None: return # Calculate Result rma = close.ewm(alpha=alpha, min_periods=length).mean() # Offset if offset != 0: rma = rma.shift(offset) # Handle fills if "fillna" in kwargs: rma.fillna(kwargs["fillna"], inplace=True) if "fill_method" in kwargs: rma.fillna(method=kwargs["fill_method"], inplace=True) # Name & Category rma.name = f"RMA_{length}" rma.category = "overlap" return rma
rma.__doc__ = \ """wildeR's Moving Average (RMA) The WildeR's Moving Average is simply an Exponential Moving Average (EMA) with a modified alpha = 1 / length. Sources: https://tlc.thinkorswim.com/center/reference/Tech-Indicators/studies-library/V-Z/WildersSmoothing https://www.incrediblecharts.com/indicators/wilder_moving_average.php Calculation: Default Inputs: length=10 EMA = Exponential Moving Average alpha = 1 / length RMA = EMA(close, alpha=alpha) Args: close (pd.Series): Series of 'close's length (int): It's period. Default: 10 offset (int): How many periods to offset the result. Default: 0 Kwargs: fillna (value, optional): pd.DataFrame.fillna(value) fill_method (value, optional): Type of fill method Returns: pd.Series: New feature generated. """