Source code for pandas_ta.overlap.alma
# -*- coding: utf-8 -*-
from numpy import exp as npExp
from numpy import nan as npNaN
from pandas import Series
from pandas_ta.utils import get_offset, verify_series
[docs]def alma(close, length=None, sigma=None, distribution_offset=None, offset=None, **kwargs):
"""Indicator: Arnaud Legoux Moving Average (ALMA)"""
# Validate Arguments
length = int(length) if length and length > 0 else 10
sigma = float(sigma) if sigma and sigma > 0 else 6.0
distribution_offset = float(distribution_offset) if distribution_offset and distribution_offset > 0 else 0.85
close = verify_series(close, length)
offset = get_offset(offset)
if close is None: return
# Pre-Calculations
m = distribution_offset * (length - 1)
s = length / sigma
wtd = list(range(length))
for i in range(0, length):
wtd[i] = npExp(-1 * ((i - m) * (i - m)) / (2 * s * s))
# Calculate Result
result = [npNaN for _ in range(0, length - 1)] + [0]
for i in range(length, close.size):
window_sum = 0
cum_sum = 0
for j in range(0, length):
# wtd = math.exp(-1 * ((j - m) * (j - m)) / (2 * s * s)) # moved to pre-calc for efficiency
window_sum = window_sum + wtd[j] * close.iloc[i - j]
cum_sum = cum_sum + wtd[j]
almean = window_sum / cum_sum
result.append(npNaN) if i == length else result.append(almean)
alma = Series(result, index=close.index)
# Offset
if offset != 0:
alma = alma.shift(offset)
# Handle fills
if "fillna" in kwargs:
alma.fillna(kwargs["fillna"], inplace=True)
if "fill_method" in kwargs:
alma.fillna(method=kwargs["fill_method"], inplace=True)
# Name & Category
alma.name = f"ALMA_{length}_{sigma}_{distribution_offset}"
alma.category = "overlap"
return alma
alma.__doc__ = \
"""Arnaud Legoux Moving Average (ALMA)
The ALMA moving average uses the curve of the Normal (Gauss) distribution, which
can be shifted from 0 to 1. This allows regulating the smoothness and high
sensitivity of the indicator. Sigma is another parameter that is responsible for
the shape of the curve coefficients. This moving average reduces lag of the data
in conjunction with smoothing to reduce noise.
Implemented for Pandas TA by rengel8 based on the source provided below.
Sources:
https://www.prorealcode.com/prorealtime-indicators/alma-arnaud-legoux-moving-average/
Calculation:
refer to provided source
Args:
close (pd.Series): Series of 'close's
length (int): It's period, window size. Default: 10
sigma (float): Smoothing value. Default 6.0
distribution_offset (float): Value to offset the distribution min 0
(smoother), max 1 (more responsive). Default 0.85
offset (int): How many periods to offset the result. Default: 0
Kwargs:
fillna (value, optional): pd.DataFrame.fillna(value)
fill_method (value, optional): Type of fill method
Returns:
pd.Series: New feature generated.
"""