# -*- coding: utf-8 -*-
from pandas import DataFrame, Series
from pandas_ta.overlap import ema
from pandas_ta.utils import get_offset, non_zero_range, verify_series
[docs]def stc(close, tclength=None, fast=None, slow=None, factor=None, offset=None, **kwargs):
"""Indicator: Schaff Trend Cycle (STC)"""
# Validate arguments
tclength = int(tclength) if tclength and tclength > 0 else 10
fast = int(fast) if fast and fast > 0 else 12
slow = int(slow) if slow and slow > 0 else 26
factor = float(factor) if factor and factor > 0 else 0.5
if slow < fast: # mandatory condition, but might be confusing
fast, slow = slow, fast
_length = max(tclength, fast, slow)
close = verify_series(close, _length)
offset = get_offset(offset)
if close is None: return
# kwargs allows for three more series (ma1, ma2 and osc) which can be passed
# here ma1 and ma2 input negate internal ema calculations, osc substitutes
# both ma's.
ma1 = kwargs.pop("ma1", False)
ma2 = kwargs.pop("ma2", False)
osc = kwargs.pop("osc", False)
# 3 different modes of calculation..
if isinstance(ma1, Series) and isinstance(ma2, Series) and not osc:
ma1 = verify_series(ma1, _length)
ma2 = verify_series(ma2, _length)
if ma1 is None or ma2 is None: return
# Calculate Result based on external feeded series
xmacd = ma1 - ma2
# invoke shared calculation
pff, pf = schaff_tc(close, xmacd, tclength, factor)
elif isinstance(osc, Series):
osc = verify_series(osc, _length)
if osc is None: return
# Calculate Result based on feeded oscillator
# (should be ranging around 0 x-axis)
xmacd = osc
# invoke shared calculation
pff, pf = schaff_tc(close, xmacd, tclength, factor)
else:
# Calculate Result .. (traditionel/full)
# MACD line
fastma = ema(close, length=fast)
slowma = ema(close, length=slow)
xmacd = fastma - slowma
# invoke shared calculation
pff, pf = schaff_tc(close, xmacd, tclength, factor)
# Resulting Series
stc = Series(pff, index=close.index)
macd = Series(xmacd, index=close.index)
stoch = Series(pf, index=close.index)
# Offset
if offset != 0:
stc = stc.shift(offset)
macd = macd.shift(offset)
stoch = stoch.shift(offset)
# Handle fills
if "fillna" in kwargs:
stc.fillna(kwargs["fillna"], inplace=True)
macd.fillna(kwargs["fillna"], inplace=True)
stoch.fillna(kwargs["fillna"], inplace=True)
if "fill_method" in kwargs:
stc.fillna(method=kwargs["fill_method"], inplace=True)
macd.fillna(method=kwargs["fill_method"], inplace=True)
stoch.fillna(method=kwargs["fill_method"], inplace=True)
# Name and Categorize it
_props = f"_{tclength}_{fast}_{slow}_{factor}"
stc.name = f"STC{_props}"
macd.name = f"STCmacd{_props}"
stoch.name = f"STCstoch{_props}"
stc.category = macd.category = stoch.category ="momentum"
# Prepare DataFrame to return
data = {stc.name: stc, macd.name: macd, stoch.name: stoch}
df = DataFrame(data)
df.name = f"STC{_props}"
df.category = stc.category
return df
stc.__doc__ = \
"""Schaff Trend Cycle (STC)
The Schaff Trend Cycle is an evolution of the popular MACD incorportating two
cascaded stochastic calculations with additional smoothing.
The STC returns also the beginning MACD result as well as the result after the
first stochastic including its smoothing. This implementation has been extended
for Pandas TA to also allow for separatly feeding any other two moving Averages
(as ma1 and ma2) or to skip this to feed an oscillator (osc), based on which the
Schaff Trend Cycle should be calculated.
Feed external moving averages:
Internally calculation..
stc = ta.stc(close=df["close"], tclen=stc_tclen, fast=ma1_interval, slow=ma2_interval, factor=stc_factor)
becomes..
extMa1 = df.ta.zlma(close=df["close"], length=ma1_interval, append=True)
extMa2 = df.ta.ema(close=df["close"], length=ma2_interval, append=True)
stc = ta.stc(close=df["close"], tclen=stc_tclen, ma1=extMa1, ma2=extMa2, factor=stc_factor)
The same goes for osc=, which allows the input of an externally calculated oscillator, overriding ma1 & ma2.
Sources:
Implemented by rengel8 based on work found here:
https://www.prorealcode.com/prorealtime-indicators/schaff-trend-cycle2/
Calculation:
STCmacd = Moving Average Convergance/Divergance or Oscillator
STCstoch = Intermediate Stochastic of MACD/Osc.
2nd Stochastic including filtering with results in the
STC = Schaff Trend Cycle
Args:
close (pd.Series): Series of 'close's, used for indexing Series, mandatory
tclen (int): SchaffTC Signal-Line length. Default: 10 (adjust to the half of cycle)
fast (int): The short period. Default: 12
slow (int): The long period. Default: 26
factor (float): smoothing factor for last stoch. calculation. Default: 0.5
offset (int): How many periods to offset the result. Default: 0
Kwargs:
ma1: 1st moving average provided externally (mandatory in conjuction with ma2)
ma2: 2nd moving average provided externally (mandatory in conjuction with ma1)
osc: an externally feeded osillator
fillna (value, optional): pd.DataFrame.fillna(value)
fill_method (value, optional): Type of fill method
Returns:
pd.DataFrame: stc, macd, stoch
"""
def schaff_tc(close, xmacd, tclength, factor):
# ACTUAL Calculation part, which is shared between operation modes
# 1St : Stochastic of MACD
lowest_xmacd = xmacd.rolling(tclength).min() # min value in interval tclen
xmacd_range = non_zero_range(xmacd.rolling(tclength).max(), lowest_xmacd)
m = len(xmacd)
# %Fast K of MACD
stoch1, pf = list(xmacd), list(xmacd)
stoch1[0], pf[0] = 0, 0
for i in range(1, m):
if lowest_xmacd[i] > 0:
stoch1[i] = 100 * ((xmacd[i] - lowest_xmacd[i]) / xmacd_range[i])
else:
stoch1[i] = stoch1[i - 1]
# Smoothed Calculation for % Fast D of MACD
pf[i] = round(pf[i - 1] + (factor * (stoch1[i] - pf[i - 1])), 8)
pf = Series(pf, index=close.index)
# 2nd : Stochastic of smoothed Percent Fast D, 'PF', above
lowest_pf = pf.rolling(tclength).min()
pf_range = non_zero_range(pf.rolling(tclength).max(), lowest_pf)
# % of Fast K of PF
stoch2, pff = list(xmacd), list(xmacd)
stoch2[0], pff[0] = 0, 0
for i in range(1, m):
if pf_range[i] > 0:
stoch2[i] = 100 * ((pf[i] - lowest_pf[i]) / pf_range[i])
else:
stoch2[i] = stoch2[i - 1]
# Smoothed Calculation for % Fast D of PF
pff[i] = round(pff[i - 1] + (factor * (stoch2[i] - pff[i - 1])), 8)
return [pff, pf]