# -*- coding: utf-8 -*-
from pandas import DataFrame
from pandas_ta.utils import get_offset, verify_series
[docs]def ha(open_, high, low, close, offset=None, **kwargs):
"""Candle Type: Heikin Ashi"""
# Validate Arguments
open_ = verify_series(open_)
high = verify_series(high)
low = verify_series(low)
close = verify_series(close)
offset = get_offset(offset)
# Calculate Result
m = close.size
df = DataFrame({
"HA_open": 0.5 * (open_.iloc[0] + close.iloc[0]),
"HA_high": high,
"HA_low": low,
"HA_close": 0.25 * (open_ + high + low + close),
})
for i in range(1, m):
df["HA_open"][i] = 0.5 * (df["HA_open"][i - 1] + df["HA_close"][i - 1])
df["HA_high"] = df[["HA_open", "HA_high", "HA_close"]].max(axis=1)
df["HA_low"] = df[["HA_open", "HA_low", "HA_close"]].min(axis=1)
# Offset
if offset != 0:
df = df.shift(offset)
# Handle fills
if "fillna" in kwargs:
df.fillna(kwargs["fillna"], inplace=True)
if "fill_method" in kwargs:
df.fillna(method=kwargs["fill_method"], inplace=True)
# Name and Categorize it
df.name = "Heikin-Ashi"
df.category = "candles"
return df
ha.__doc__ = \
"""Heikin Ashi Candles (HA)
The Heikin-Ashi technique averages price data to create a Japanese
candlestick chart that filters out market noise. Heikin-Ashi charts,
developed by Munehisa Homma in the 1700s, share some characteristics
with standard candlestick charts but differ based on the values used
to create each candle. Instead of using the open, high, low, and close
like standard candlestick charts, the Heikin-Ashi technique uses a
modified formula based on two-period averages. This gives the chart a
smoother appearance, making it easier to spots trends and reversals,
but also obscures gaps and some price data.
Sources:
https://www.investopedia.com/terms/h/heikinashi.asp
Calculation:
HA_OPEN[0] = (open[0] + close[0]) / 2
HA_CLOSE = (open[0] + high[0] + low[0] + close[0]) / 4
for i > 1 in df.index:
HA_OPEN = (HA_OPEN[iā1] + HA_CLOSE[iā1]) / 2
HA_HIGH = MAX(HA_OPEN, HA_HIGH, HA_CLOSE)
HA_LOW = MIN(HA_OPEN, HA_LOW, HA_CLOSE)
How to Calculate Heikin-Ashi
Use one period to create the first Heikin-Ashi (HA) candle, using
the formulas. For example use the high, low, open, and close to
create the first HA close price. Use the open and close to create
the first HA open. The high of the period will be the first HA high,
and the low will be the first HA low. With the first HA calculated,
it is now possible to continue computing the HA candles per the formulas.
āā
Args:
open_ (pd.Series): Series of 'open's
high (pd.Series): Series of 'high's
low (pd.Series): Series of 'low's
close (pd.Series): Series of 'close's
Kwargs:
fillna (value, optional): pd.DataFrame.fillna(value)
fill_method (value, optional): Type of fill method
Returns:
pd.DataFrame: ha_open, ha_high,ha_low, ha_close columns.
"""