kvo#

kvo(high, low, close, volume, fast=None, slow=None, signal=None, mamode=None, drift=None, offset=None, **kwargs)[source]#

Klinger Volume Oscillator (KVO)

This indicator was developed by Stephen J. Klinger. It is designed to predict price reversals in a market by comparing volume to price.

Sources:

https://www.investopedia.com/terms/k/klingeroscillator.asp https://www.daytrading.com/klinger-volume-oscillator

Calculation:
Default Inputs:

fast=34, slow=55, signal=13, drift=1

EMA = Exponential Moving Average

SV = volume * signed_series(HLC3, 1) KVO = EMA(SV, fast) - EMA(SV, slow) Signal = EMA(KVO, signal)

Args:

high (pd.Series): Series of ‘high’s low (pd.Series): Series of ‘low’s close (pd.Series): Series of ‘close’s volume (pd.Series): Series of ‘volume’s fast (int): The fast period. Default: 34 long (int): The long period. Default: 55 length_sig (int): The signal period. Default: 13 mamode (str): See `help(ta.ma)`. Default: ‘ema’ offset (int): How many periods to offset the result. Default: 0

Kwargs:

fillna (value, optional): pd.DataFrame.fillna(value) fill_method (value, optional): Type of fill method

Returns:

pd.DataFrame: KVO and Signal columns.