wma#
- wma(close, length=None, asc=None, talib=None, offset=None, **kwargs)[source]#
Weighted Moving Average (WMA)
The Weighted Moving Average where the weights are linearly increasing and the most recent data has the heaviest weight.
- Sources:
https://en.wikipedia.org/wiki/Moving_average#Weighted_moving_average
- Calculation:
- Default Inputs:
length=10, asc=True
total_weight = 0.5 * length * (length + 1) weights_ = [1, 2, …, length + 1] # Ascending weights = weights if asc else weights[::-1]
- def linear_weights(w):
- def _compute(x):
return (w * x).sum() / total_weight
return _compute
WMA = close.rolling(length)_.apply(linear_weights(weights), raw=True)
- Args:
close (pd.Series): Series of ‘close’s length (int): It’s period. Default: 10 asc (bool): Recent values weigh more. Default: True talib (bool): If TA Lib is installed and talib is True, Returns the TA Lib
version. Default: True
offset (int): How many periods to offset the result. Default: 0
- Kwargs:
fillna (value, optional): pd.DataFrame.fillna(value) fill_method (value, optional): Type of fill method
- Returns:
pd.Series: New feature generated.